Technology shocks and Monetary Policy: Assessing the Fed's performance (J.Gali et al., JME 2003)

Miguel Angel Alcobendas, Laura Desplans, Dong Hee Joe

March 5, 2010

Contents

- Introduction
- Baseline model
- Monetary rules
- Occuparison: Empirical evidence VS Simulation
- Conclusion

• We only know three chiarmans of the Fed

- We only know three chiarmans of the Fed
- Ben S. Bernanke (2006 now)
 - Very famous economist
 - TV star during the financial crisis

- We only know three chiarmans of the Fed
- Ben S. Bernanke (2006 now)
 - Very famous economist
 - TV star during the financial crisis
- Alan Greenspan (1987 2006)
 - The "Maestro" of the economy
 - The Age of Turbulence

- We only know three chiarmans of the Fed
- Ben S. Bernanke (2006 now)
 - Very famous economist
 - TV star during the financial crisis
- Alan Greenspan (1987 2006)
 - The "Maestro" of the economy
 - The Age of Turbulence
- Paul A. Volcker (1979 1987)
 - Second oil shock
 - Typical Hawkish

Introduction: Main Question

Main question of the paper
 ⇒ How well does the Fed do its job?

- 4 ロ b 4 個 b 4 重 b 4 重 b 9 Q (?)

Introduction: Main Question

- Main question of the paper
 ⇒ How well does the Fed do its job?
- What is the Fed's job?

Introduction: Main Question

- Main question of the paper
 ⇒ How well does the Fed do its job?
- What is the Fed's job?
- The Federal Reserve Act says "...to promote maximum sustainable output and employment and to promote stable prices"

• To answer how well the Fed does its job, the paper

- To answer how well the Fed does its job, the paper
- identifies technology shock as the only source of the unit root in labor productivity

- To answer how well the Fed does its job, the paper
- identifies technology shock as the only source of the unit root in labor productivity
- characterizes the Fed's systematic response to technology shocks and its implications for U.S. output, hours and inflation based on a structural VAR model

- To answer how well the Fed does its job, the paper
- identifies technology shock as the only source of the unit root in labor productivity
- characterizes the Fed's systematic response to technology shocks and its implications for U.S. output, hours and inflation based on a structural VAR model
- compares the empirical responses to the simulated ones from three simple monetary policies in the context of a standard business cycle model with sticky prices
 - **1 optimal policy**: one that fully stabilizes prices
 - simple Taylor rule
 - o monetary targeting rule

• A simple version of the Calvo(1983) model with sticky prices

- A simple version of the Calvo(1983) model with sticky prices
- Key feature of New Keynesian model: Nominal rigidities

- A simple version of the Calvo(1983) model with sticky prices
- Key feature of New Keynesian model: Nominal rigidities
- Representative household, continuum of firms ($i \in [0,1]$), monetary policy

- A simple version of the Calvo(1983) model with sticky prices
- Key feature of New Keynesian model: Nominal rigidities
- Representative household, continuum of firms ($i \in [0,1]$), monetary policy
- Two key features of the baseline model
 - imperfect competition: differentiated goods, i.e. firms set their prices
 - sticky prices: only a fraction of firms can reset their prices in any given period

Baseline model: Household

Infinitely lived representative household solving

$$\max E_0 \sum_{t=0}^{\infty} \beta^t (\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi})$$

subject to

$$\begin{split} \int_0^1 P_t(i) C_t(i) di + Q_t B_t & \leq B_{t-1} + W_t N_t \\ & \lim_{T \to \infty} E_t B_T \geq 0 \\ \text{where } C_t & \equiv \left(\int_0^1 C_t(i)^{1-\frac{1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon-1}} \end{split}$$

Baseline model: Household

- $P_t(i)$: price of good i at t
- $P_t \equiv (\int_0^1 P_t(i)^{1-\epsilon} di)^{\frac{1}{1-\epsilon}}$: aggregate price index at t
- $C_t(i)$: amount consumed of good i at t
- ullet C_t : aggregate consumption index as previously defined
- B_t: quantity of 1 period risk-free discount bonds purchased at t
- Q_t: its price at t
- W_t : nominal wage (per hour) at t
- N_t: hours worked at t

Baseline model: Household optimization

• Solving the problem and taking the log, we get the *labor supply* schedule

$$w_t - p_t = \sigma c_t + \varphi n_t$$

Baseline model: Household optimization

 Solving the problem and taking the log, we get the labor supply schedule

$$w_t - p_t = \sigma c_t + \varphi n_t$$

• Letting $r_t \equiv -logQ_t$, $rr \equiv -log\beta$ and taking the first-order Taylor expansion, we also get the *log-linearized Euler equation*

$$c_t = -\frac{1}{\sigma}(r_t - E_t \pi_{t+1} - rr) + E_t c_{t+1}$$

Baseline model: Household optimization

 Solving the problem and taking the log, we get the labor supply schedule

$$w_t - p_t = \sigma c_t + \varphi n_t$$

• Letting $r_t \equiv -logQ_t$, $rr \equiv -log\beta$ and taking the first-order Taylor expansion, we also get the *log-linearized Euler equation*

$$c_t = -\frac{1}{\sigma}(r_t - E_t \pi_{t+1} - rr) + E_t c_{t+1}$$

• and from the clearing of each market i $(Y_t(i) = C_t(i), \text{ so } Y_t = C_t),$ we get

$$y_t = -\frac{1}{\sigma}(r_t - E_t \pi_{t+1} - rr) + E_t y_{t+1}$$

Baseline model: Firm

 Continuum of firms each producing a differentiated good with technology

$$Y_t(i) = A_t N_t(i), i \in [0,1]$$

with $a \equiv log A_t$ following

$$\Delta a_t = \rho \Delta a_{t-1} + \epsilon_t$$

where
$$ho \in [0,1)$$

Baseline model: Firm

 Continuum of firms each producing a differentiated good with technology

$$Y_t(i) = A_t N_t(i), i \in [0,1]$$

with $a \equiv logA_t$ following

$$\Delta a_t = \rho \Delta a_{t-1} + \epsilon_t$$

where
$$ho \in [0,1)$$

- Assumptions
 - variations in aggregate productivity are the only sources of fluctuations
 - no capital accumulation (most results and implications not affected)

under flexible prices

Firms put markup on marginal cost to maximize profits

• MC_t = real marginal cost at t = real wage/marginal product = $\frac{W_t}{P_t A_t}$

under flexible prices

Firms put markup on marginal cost to maximize profits

- MC_t = real marginal cost at t = real wage/marginal product = $\frac{W_t}{P_t A_t}$
- combined with labor supply and good market clearings
 → the common marginal cost for all firms

$$mc_t = (\sigma + \varphi)y_t - (1 + \varphi)a_t$$

under flexible prices

Firms put markup on marginal cost to maximize profits

- MC_t = real marginal cost at t = real wage/marginal product = $\frac{W_t}{P_t A_t}$
- \bullet combined with labor supply and good market clearings \to the common marginal cost for all firms

$$mc_t = (\sigma + \varphi)y_t - (1 + \varphi)a_t$$

 same CRS technology, same isoelastic demand, same real marginal cost across all firms

$$Y_t(i) = A_t N_t(i), \quad C_t(i) = (\frac{P_t(i)}{P_t})^{-\epsilon} C_t$$

under flexible prices

Firms put markup on marginal cost to maximize profits

- MC_t = real marginal cost at t = real wage/marginal product = $\frac{W_t}{P_t A_t}$
- \bullet combined with labor supply and good market clearings \to the common marginal cost for all firms

$$mc_t = (\sigma + \varphi)y_t - (1 + \varphi)a_t$$

 same CRS technology, same isoelastic demand, same real marginal cost across all firms

$$Y_t(i) = A_t N_t(i), \quad C_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\epsilon} C_t$$

• under flexible prices, the markup is common across all firms, given by $\epsilon/(\epsilon-1)$ and $mc_t=-\log\epsilon/(\epsilon-1)=mc$ (not depending on t)

• Call the equilibrium processes under flexible prices Natural levels

- Call the equilibrium processes under flexible prices Natural levels
- Natural level of output

$$y_t^*=\gamma+\psi a_t$$
 where $\psi\equiv(1+\varphi)/(\sigma+\varphi)$, $\gamma\equiv mc/(\sigma+\varphi)$

- Call the equilibrium processes under flexible prices Natural levels
- Natural level of output

$$y_t^*=\gamma+\psi a_t$$
 where $\psi\equiv(1+arphi)/(\sigma+arphi)$, $\gamma\equiv mc/(\sigma+arphi)$

Natural level of employment

$$n_t^* = \gamma + (\psi - 1)a_t$$

- Call the equilibrium processes under flexible prices Natural levels
- Natural level of output

$$y_t^*=\gamma+\psi a_t$$
 where $\psi\equiv (1+arphi)/(\sigma+arphi)$, $\gamma\equiv mc/(\sigma+arphi)$

Natural level of employment

$$n_t^* = \gamma + (\psi - 1)a_t$$

Natural rate of real interest rate

$$rr_t^* = rr + \sigma \rho \psi \Delta a_t$$

where rr_t : real interest rate at t

• Assumption: $\Pr_{i,t}(\text{reset its price in this period}) = 1-\theta$

- Assumption: $Pr_{i,t}(\text{reset its price in this period}) = 1-\theta$
- the markup and the real marginal cost will no longer be constant and output gap $(x_t \equiv y_t y_t^*)$ may emerge

- Assumption: $Pr_{i,t}(\text{reset its price in this period}) = 1-\theta$
- the markup and the real marginal cost will no longer be constant and output gap $(x_t \equiv y_t y_t^*)$ may emerge
- Then we can derive the new Phillips curve

$$\pi_t = \beta E_t \pi_{t+1} + k x_t, k \equiv \frac{(1-\theta)(1-\beta\theta)(\sigma+\varphi)}{\theta}$$

- Assumption: $Pr_{i,t}(\text{reset its price in this period}) = 1-\theta$
- the markup and the real marginal cost will no longer be constant and output gap $(x_t \equiv y_t y_t^*)$ may emerge
- Then we can derive the new Phillips curve

$$\pi_t = \beta \mathsf{E}_t \pi_{t+1} + \mathsf{k} \mathsf{x}_t, \, \mathsf{k} \equiv \frac{(1-\theta)(1-\beta\theta)(\sigma+\varphi)}{\theta}$$

• and $y_t = -\frac{1}{\sigma}(r_t - E_t \pi_{t+1} - rr) + E_t y_{t+1}$ can be rewritten as

$$x_t = -\frac{1}{\sigma}(r_t - E_t \pi_{t+1} - r r_t^*) + E_t x_{t+1}$$

The Basic New Keynesian Model

• New Keynesian Phillips curve

$$\pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa x_t$$

Dynamic IS Equation

$$x_t = -(\frac{1}{\sigma})(r_t - E_t\{\pi_{t+1}\} - rr^*) + E_t\{x_{t+1}\}$$

Monetary Policy Rule

Dynamics effects of technology shocks

Alternative specifications of the systematic component of monetary policy that will try to lead us to the optimal allocation:

- A simple Taylor rule
- Constant money growth

How the nature of the monetary policy affects the equilibrium responses of different variables to a permanent shock to technology?

Optimal monetary policy

- Aim of monetary policy: to replicate the allocation associated with the flexible price equilibrium.
- The optimal policy requires that $x_t = \pi_t = 0$, for all t.
- Flexible price equilibrium replicated with the following interest rule: $r_t = rr + \sigma \rho \psi \triangle a_t + \emptyset_\pi \pi_t$ for any $\phi_\pi > 1$
- The equilibrium response of output and unemployment will match that of their natural levels

Optimal monetary policy

• The sign of the response of employment depends on the size of σ (1/ σ : intertemporal elasticity of substitution between consumption in 2 periods)

$$E_0 \sum \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi} \right)$$

Optimal monetary policy

A simple Taylor rule

• The central bank follows the rule:

$$r_t = rr + \phi_\pi \pi_t + \phi_X x_t$$

Calibration

A monetary targeting rule

- $m_t m_{t-1} = \Lambda_m$
- Without loss of generality assume $\Lambda_m = 0$, which is consistent with zero inflation in the steady state.
- ullet The demand for money is assumed to be $m_t-p_t=y_t-\eta r_t$
- Letting $m_t^* \equiv m_t p_t \psi a_t$ $m_t^* = x_t - \eta r_t$ $m_{t-1}^* = m_t^* + \pi_t + \psi \triangle a_t$
- $r_t = rr + (\frac{\sigma 1}{1 + \eta}) \sum (\frac{\eta}{1 + \eta})^{\kappa 1} E_t \{\triangle y_{t + \kappa}\}$

- Evidence on the Fed's systematic response to technology shocks and its implications for U.S. output, hours and inflation.
- Are those responses consistent with any of the rules considered in the previous section?
- Sample period 1954:I-1998:III. Pre-Volcker Period (1954:I-1979:II) -Volcker-Greenspan Period (1982:III-1998:III).
- The empirical effects of technology shocks are determined through the estimation of a structural VAR.

Pre-Volcker vs Volcker-Greenspan Era

Clarida, Galí and Gertler, QJE 2000

- Estimation of a forward-looking monetary policy reaction function for the post-war US economy. (1954:I-1998:III)
- Results
 - Differences in estimated rule across across periods
 - Volcker-Greenspan (1982:III-1998:III) interest rate policy more sensitive to changes in expected inflation than in the Pre-Volcker era (1954:I-1979:II)
 - The Volcker-Greenspan rule is stabilizing over the equilibrium properties of inflation and output

The Fed's response to technology shocks:evidence Identification and Estimation

- We are considering a structural VAR(4) with four variables.
- Only interested in exogenous variations in technology.

$$Y_t = \left(egin{array}{c} Productivity_t \ \pi_t \ hours_t \ real \ interest \ rate_t \end{array}
ight)$$

$$Y_t = F_1 Y_{t-1} + F_2 Y_{t-2} + F_3 Y_{t-3} + F_4 Y_{t-4} + E_t$$

 Identification restriction: Only technology shocks may have a permanent effect on the level of labor productivity (Gali AER 1999)

$$Productivity_t = z_t + \zeta_t(K_t, L_t, Z_t, U_t, N_t)$$

Identification and Estimation

Table 1 Estimated VAR model: summary statistics

Equation		Own lags	Other lags	R^2	DW
Labor productivity	Pre-Volcker	0.02	0.00	0.49	1.97
	Volcker-Greenspan	0.20	0.15	0.43	1.92
Hours	Pre-Volcker	0.00	0.20	0.94	1.98
	Volcker-Greenspan	0.00	0.01	0.96	1.95
Real interest rate	Pre-Volcker	0.30	0.20	0.60	1.96
	Volcker-Greenspan	0.00	0.03	0.89	1.96
Inflation	Pre-Volcker	0.00	0.00	0.95	1.99
	Volcker-Greenspan	0.00	0.60	0.90	1.95

Note: Values in the third and fourth columns are *p*-values for the *F* tests. The Pre-Volcker period corresponds to 1954:2-1979:3; and the Volcker–Greenspan period corresponds to 1982:4-1998:4.

The Volcker-Greenspan Era 1982:III-1998:III

ullet Estimated response to a positive technological shock (sd=1) vs Impulse response under optimal policy.

- Optimal Policy: $x_t = \pi_t = 0$
- $m{\bullet}$ ho=0 , $\Delta a_t=
 ho\Delta a_{t-1}+\epsilon_t$, $y_t^*=\gamma+\left(rac{1+arphi}{\sigma+arphi}
 ight)a_t$
- $\bullet \ \ n_t^* = \gamma + \left(\tfrac{1+\varphi}{\sigma+\varphi} 1 \right) \mathsf{a}_t \ , \ \mathit{rr}_t^* = \mathit{rr} + \sigma \rho \left(\tfrac{1+\varphi}{\sigma+\varphi} \right) \Delta \mathsf{a}_t$

The Volcker-Greenspan Era 1982:III-1998:III

The Volcker-Greenspan Era 1982:III-1998:III

Both hours and inflation response functions are not significant

Volcker-Greenspan period consistent with the optimal policy

The Pre-Volcker Period (1954:I-1979:II)

• Estimated response to a positive technological shock (sd = 1) vs Impulse response under optimal policy.

- Optimal Policy: $x_t = \pi_t = 0$
- $m{\bullet}$ ho=0.7 , $\Delta a_t=
 ho\Delta a_{t-1}+\epsilon_t$, $y_t^*=\gamma+\left(rac{1+arphi}{\sigma+arphi}
 ight)a_t$
- $\bullet \ \ n_t^* = \gamma + \left(\tfrac{1+\varphi}{\sigma+\varphi} 1 \right) \mathsf{a}_t \ , \ \mathit{rr}_t^* = \mathit{rr} + \sigma \rho \left(\tfrac{1+\varphi}{\sigma+\varphi} \right) \Delta \mathsf{a}_t$

The Pre-Volcker Period (1954:I-1979:II)

The Pre-Volcker Period (1954:I-1979:II)

Both hours and inflation response functions deviate from optimal path

Pre-Volcker period is not consistent with the optimal policy.

The Pre-Volcker Period vs Monetary Targeting Rule

Conclusions

- Analysis of the Fed's response to technology shocks and its implications for U.S. output, hours and inflation.
- Consistency of the Fed's (Volcker-Greenspan period) response to a technology shock with a rule that seeks to stabilize prices and the output gap.
- The Fed's policy in Pre-Volcker period tended to overstabilize output thus generating excess volatility in inflation.