HOW WELL DOES THE IS-LM MODEL FIT POSTWAR U.S. DATA?
Jordi Galí (1992) - The Quarterly Journal of Economics

Andrés Murcia, Julián Parada and Renata Samacá

Toulouse School of Economics, January 22nd 2010
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets

Murcia, Parada and Samacá

Discussion Gali(1992) - QJE
The IS-LM-Phillips curve model has been commonly used to evaluate, among others, alternative economic policies and for purposes of economic forecasting. However, the model has been criticized for the next reasons:

- lack of microeconomic foundations. Especially on the supply side.
- arbitrariness of its assumptions on the nature of expectations.
- unsuitability of the models for the purpose of policy evaluation.
- strong restrictions assumed for econometric identification.
The IS-LM-Phillips curve model has been commonly used to evaluate, among others, alternative economic policies and for purposes of economic forecasting. However, the model has been criticized for the next reasons:

- lack of microeconomic foundations. Especially on the supply side.
- arbitrariness of its assumptions on the nature of expectations.
- unsuitability of the models for the purpose of policy evaluation.
- strong restrictions assumed for econometric identification.
The IS-LM-Phillips curve model has been commonly used to evaluate, among others, alternative economic policies and for purposes of economic forecasting. However, the model has been criticized for the next reasons:

- lack of microeconomic foundations. Especially on the supply side.
- arbitrariness of its assumptions on the nature of expectations.
- unsuitability of the models for the purpose of policy evaluation.
- strong restrictions assumed for econometric identification.
The IS-LM-Phillips curve model has been commonly used to evaluate, among others, alternative economic policies and for purposes of economic forecasting. However, the model has been criticized for the next reasons:

- lack of microeconomic foundations. Especially on the supply side.
- arbitrariness of its assumptions on the nature of expectations.
- unsuitability of the models for the purpose of policy evaluation.
- strong restrictions assumed for econometric identification.
Despite of a general consensus in accepting these critics, there are two different research programs:

- **New Classics**: Rejects the Keynesian paradigm and is based on neoclassical economic theory. Uses market clearing and perfect competition principles.

- **New Keynesians**: Under market imperfections, Keynesian models might explain fluctuations in the short run that neoclassical models cannot.
Despite of a general consensus in accepting these critics, there are two different research programs:

- **New Classics**: Rejects the Keynesian paradigm and is based on neoclassical economic theory. Uses market clearing and perfect competition principles.

- **New Keynesians**: Under market imperfections, Keynesian models might explain fluctuations in the short run that neoclassical models cannot.
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets
“...to reevaluate, with the aid of time series methods, the empirical validity of the IS-LM-Phillips curve model, the central paradigm of Keynesian economics.”
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets
Galí highlights the next three predictions of the IS-LM-Phillips curve model:

a. “Aggregate demand shocks have (at least) short run effects on GNP and other real variables as a result of slow adjustment of nominal variables.

b. Monetary shocks are transmitted to the real sector through changes in real interest rates.

c. GNP and prices move in the same direction in response to an aggregate demand shock, but in opposite direction in response to an aggregate supply shock.”
Main predictions of the IS-LM-Phillips curve model

Galí highlights the next three predictions of the IS-LM-Phillips curve model:

a. “Aggregate demand shocks have (at least) short run effects on GNP and other real variables as a result of slow adjustment of nominal variables.

b. Monetary shocks are transmitted to the real sector through changes in real interest rates.

c. GNP and prices move in the same direction in response to an aggregate demand shock, but in opposite direction in response to an aggregate supply shock.”
Main predictions of the IS-LM-Phillips curve model

Galí highlights the next three predictions of the IS-LM-Phillips curve model:

a. “Aggregate demand shocks have (at least) short run effects on GNP and other real variables as a result of slow adjustment of nominal variables.

b. Monetary shocks are transmitted to the real sector through changes in real interest rates.

c. GNP and prices move in the same direction in response to an aggregate demand shock, but in opposite direction in response to an aggregate supply shock.”
Outline

1. **Summarize**
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. **Discussion**
 - Assumptions
 - Money Supply
 - Financial markets
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
The paper models jointly the behavior of postwar U.S. time series for money, interest rates, prices, and GNP.

The four disturbances described in the IS-LM-Phillips curve model are identified as the main sources of fluctuation in the studied series:

- Money supply shocks.
- Money demand shocks.
- IS shocks.
- Aggregate supply shocks.

The response of the economy under the estimated model is compared with the theoretical response predicted by the IS-LM-Phillips curve model.
Outline

1. **Summarize**
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. **Discussion**
 - Assumptions
 - Money Supply
 - Financial markets
Most of the reported results match theoretical predictions associated with the standard versions of the IS-LM model.

Slow price adjustment is observed, as well as a strong and persistent effect of Aggregate Demand shocks.

However, the aggregate supply shocks are the most important source of variability in the short run. These shocks have also permanent effects on GNP.
Most of the reported results match theoretical predictions associated with the standard versions of the IS-LM model.

Slow price adjustment is observed, as well as a strong and persistent effect of Aggregate Demand shocks.

However, the aggregate supply shocks are the most important source of variability in the short run. These shocks have also permanent effects on GNP.
Most of the reported results match theoretical predictions associated with the standard versions of the IS-LM model.

Slow price adjustment is observed, as well as a strong and persistent effect of Aggregate Demand shocks.

However, the aggregate supply shocks are the most important source of variability in the short run. These shocks have also permanent effects on GNP.
Assume we are a central bank and we want to evaluate the impacts of a monetary policy.

Can we use this approach to assess such effects?
The model can be implemented and is useful to predict effects.

In fact this model has been implemented for several countries.

However, it is important to discuss some of the limitations of the model and its implementation:

- Assumptions in Galí (1992) used to identify the model. In real world, the central bank does not control completely the monetary supply as is assumed in the model.
- The absence of more complex financial market into the IS-LM.
Discussion

1. The model can be implemented and is useful to predict effects.

2. In fact this model has been implemented for several countries.

3. However, it is important to discuss some of the limitations of the model and its implementation:
 - Assumptions in Galí (1992) used to identify the model.
 - In real world, the central bank does not control completely the monetary supply as is assumed in the model.
 - The absence of more complex financial market into the IS-LM.
1. The model can be implemented and is useful to predict effects.

2. In fact, this model has been implemented for several countries.

3. However, it is important to discuss some of the limitations of the model and its implementation:
 - Assumptions in Galí (1992) used to identify the model.
 - In real world, the central bank does not control completely the monetary supply as is assumed in the model.
 - The absence of more complex financial market into the IS-LM.
1. The model can be implemented and is useful to predict effects.

2. In fact this model has been implemented for several countries.

3. However, it is important to discuss some of the limitations of the model and its implementation:
 - Assumptions in Galí (1992) used to identify the model.
 - In real world, the central bank does not control completely the monetary supply as is assumed in the model.
 - The absence of more complex financial market into the IS-LM.
The model can be implemented and is useful to predict effects.

In fact this model has been implemented for several countries.

However, it is important to discuss some of the limitations of the model and its implementation:

- Assumptions in Galí (1992) used to identify the model.
- In real world, the central bank does not control completely the monetary supply as is assumed in the model.
- The absence of more complex financial market into the IS-LM.
1. The model can be implemented and is useful to predict effects.

2. In fact this model has been implemented for several countries.

3. However, it is important to discuss some of the limitations of the model and its implementation:
 - Assumptions in Galí (1992) used to identify the model.
 - In real world, the central bank does not control completely the monetary supply as is assumed in the model.
 - The absence of more complex financial market into the IS-LM.
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets

Assumptions
Money Supply
Financial markets

Murcia, Parada and Samacá
Discussion Gali(1992) - QJE
Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

Short run assumptions
Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

Short run assumptions
Assumptions

1. Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2. Short run assumptions
 i. No contemporaneous effect of money supply shocks on output.
 No contemporaneous effect of money demand shocks on output.
 Contemporaneous prices do not enter the money supply rule.
Assumptions

1. Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2. Short run assumptions
 i. No contemporaneous effect of money supply shocks on output.
 ii. No contemporaneous effect of money demand shocks on output.
 iii. Contemporaneous prices do not enter the money supply rule.
Assumptions

1 Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2 Short run assumptions
 i. No contemporaneous effect of money supply shocks on output.
 ii. No contemporaneous effect of money demand shocks on output.
 iii. Contemporaneous prices do not enter the money supply rule.
Assumptions

1. Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2. Short run assumptions
 i. No contemporaneous effect of money supply shocks on output.
 ii. No contemporaneous effect of money demand shocks on output.
 iii. Contemporaneous prices do not enter the money supply rule.
Assumptions

1. **Long run assumptions:** No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2. **Short run assumptions**
 i. No contemporaneous effect of money supply shocks on output.
 ii. No contemporaneous effect of money demand shocks on output.
 iii. Contemporaneous prices do not enter the money supply rule.
Assumptions

1 Long run assumptions: No long run effects of
 i. money supply shocks on GNP.
 ii. money demand shocks on GNP.
 iii. IS shocks on GNP.

2 Short run assumptions
 i. No contemporaneous effect of money supply shocks on output.
 ii. No contemporaneous effect of money demand shocks on output.
 iii. Contemporaneous prices do not enter the money supply rule.
Assumption iii short run: Contemporaneous prices do not enter the money supply rule.

- Usually when monetary decisions are taken, the Central Bank has available information of expected inflation and recent prices.

- Yield curves and surveys can reveal valuable information about expected prices.

- National bureaus of statistics provide recent prices.
Assumption iii short run: Contemporaneous prices do not enter the money supply rule.

- Usually when monetary decisions are taken, the Central Bank has available information of expected inflation and recent prices.
- Yield curves and surveys can reveal valuable information about expected prices.
- National bureaus of statistics provide recent prices.
Assumption iii short run: Contemporaneous prices do not enter the money supply rule.

- Usually when monetary decisions are taken, the Central Bank has available information of expected inflation and recent prices.
- Yield curves and surveys can reveal valuable information about expected prices.
- National bureaus of statistics provide recent prices.
Outline

1 Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2 Discussion
 - Assumptions
 - Money Supply
 - Financial markets
The money supply

1. In real world Central Banks do not control money supply directly.
 - REPO interest rate.

\[M = mB \]

2. Transmission channels of monetary policy are complex.
The money supply

1. In real world Central Banks do not control money supply directly.
 - REPO interest rate.

 \[M = mB \]

2. Transmission channels of monetary policy are complex.
The money supply

1. In real world Central Banks do not control money supply directly.
 - REPO interest rate.
 \[M = mB \]

2. Transmission channels of monetary policy are complex.
The money supply

1. In real world Central Banks do not control money supply directly.
 - REPO interest rate.
 - \(M = mB \)

2. Transmission channels of monetary policy are complex.
Figure: Monetary multiplier for the period 1959 - 1989. Calculated by using the monetary aggregate M1 and the monetary base.
Outline

1. Summarize
 - Context
 - Objective
 - Strategy
 - Empirical tool
 - Results

2. Discussion
 - Assumptions
 - Money Supply
 - Financial markets

Murcia, Parada and Samacá

Discussion Gali(1992) - QJE
Financial markets in real world are more complex.

When considering more complex financial markets, the effects of the monetary policy are predicted with much less accuracy.

Example: Swaps, forwards, options. In particular, if firms can use derivative products in order to manage interest rate risk, the monetary transmission mechanism of monetary policy might change.
Financial markets in real world are more complex.

When considering more complex financial markets, the effects of the monetary policy are predicted with much less accuracy.

Example: Swaps, forwards, options. In particular, if firms can use derivative products in order to manage interest rate risk, the monetary transmission mechanism of monetary policy might change.
Financial markets

- Financial markets in real world are more complex.
- When considering more complex financial markets, the effects of the monetary policy are predicted with much less accuracy.
- Example: Swaps, forwards, options. In particular, if firms can use derivative products in order to manage interest rate risk, the monetary transmission mechanism of monetary policy might change.